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Abstract. The PT is applied to the general second- and third-order ordinary differential
equations invariant under the two symmetries associated with time translation and rescaling in
order to investigate their solvability and global integrability. The effect of the two symmetries
on the compatibility conditions is determined and we show that, generally, these conditions are
automatically a consequence of the resonance condition. Use is made of truncated Laurent series
both in ascending and descending powers. As an example, the case of the generalized Chazy
equation is presented.

1. Introduction

We have recently shown [8] that the singularity analysis of the Lotka Volterra and Quadratic
Systems in two dimensions is intimately associated with the presence of first integrals. These
systems possess in general one Lie point symmetry, that of invariance under time translation.
This invariance, represented by the generator

G1 = ∂

∂t
(1)

is common in physical systems, in which the force law does not explicitly depend upon
time. Another symmetry, common in nature, is that of self-similarity, which lies at the
foundation of the dimensional analysis found so useful by engineers, and has the generator

G2 = −qt ∂
∂t
+ x ∂

∂x
. (2)

It is not unusual to find both symmetries in the same physical problem, for example the
gravitational two-body problem. Since the two symmetries, (1) and (2), have the Lie bracket

[G1,G2] = G1G2−G2G1 = −qG1 (3)
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and

G1 6= ρ(t, x)G2 (4)

the Lie algebra is that of Lie’s type III of two-dimensional algebras [12] and, as
such, represents the equivalence class of ordinary differential equations (ODEs) with two
symmetries with properties (3) and (4). We consider it to be of interest to examine the
properties of ordinary differential equations invariant under (1) and (2) from the viewpoint
of singularity analysis. In particular we wish to consider second- and third-order ODEs with
these invariances. The general form of a scalar second-order ordinary differential equation
(SODE) invariant under the generators of time translation and rescaling, is

ẍ + x(2q+1)f (ξ) = 0 (5)

and of the third-order ordinary differential equation (TODE) is
...
x +x(3q+1)f (ξ, η) = 0 (6)

where the overdot denotes d/dt , f is an arbitrary function and

ξ = ẋ

xq+1
η = ẍ

x2q+1
. (7)

Since (5) has two symmetries, it is integrable in the sense of being reducible to quadratures.
This is very evident due to the existence of the first integral obtained from

dx

x
+ ξ dξ

(q + 1)ξ2+ f (ξ) = 0. (8)

In principle, as a consequence of the implicit function theorem, the integral can be inverted
to give ẋ in terms ofx and the formal quadrature follows from

dt = dx

ẋ(x)
. (9)

In fact (8) allows a complete qualitative treatment of the equation and a quantitative
asymptotic solution. This possibility of a formal quadrature as given by (9) does not
apply to (6).

The regular Painlev́e analysis (PA) is based on the identification of the singularities and
expansion of the function as a Laurent series in ascending powers oft − t0, which we call
‘right Painlev́e series’ (RPS), where the location of the singularity is att0. We are concerned
with the behaviour of the function ast 7→ t0. In the case of an autonomous equation, i.e.
one invariant under time translation,t0 is a function only of the initial conditions if it is
a movable singularity. More recently there has been interest [11, 6] in doing the Laurent
expansion in descending powers oft − t0, which we call ‘left Painlev́e series’ (LPS).

A standard technique used when a symmetry is present is the reduction of the order of
the ODE to one of lower order. When the equation is invariant under time translation, the
dependent variable becomes the independent variable of the reduced equation. Thus an RPS
in t − t0 for the original equation must necessarily become an LPS inx − x0 at the lower
order. In fact, when one realizes this duality, to distinguish between the RPS and the LPS
does not seem to be consistent with the concept of using Laurent expansions as solutions
of ODEs. We should note here that the existence of the symmetriesG1,G2 and the passing
of the Painlev́e test (PT) are not one to one. Thus an equation may be invariant under time
translation and rescaling and yet not pass the PT (see the example treated in section 10).
However, as we shall see below, invariance under rescaling does mean that there can exist
a singularity when all terms in an equation are dominant with interesting consequences on
the structure of the Painlevé series.
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We wish to make clear the connection between the content of this paper and the standard
PT. Our procedure, as was clearly demonstrated in [8], is to construct a Laurent series
without making the distinction between resonance and compatibility, i.e. we explicitly
calculate all of the terms of the series and remain sensitive to the definition of a Laurent
series. The leading-order analysis of an equation possessing the self-similar property gives
a self-similar solution by the nature of its construction which is identical to the search for
a self-similar symmetry. It may also give other solutions from a subset of all of the terms
in the equation. In this case the terms considered must be separately homogeneous in the
independent and dependent variables. These self-similar solutions are known often to be
asymptotic solutions.

In this work we are more concerned with the leading-order behaviour of solutions, but
we must keep the PT in mind as this was the initial inspiration for our investigations.
We must, however, emphasize that our approach does differ from that of the PT. This is
because the greater generality of the self-similar symmetry draws us away from the analytic
properties of the PT in the complex plane. Nevertheless, we do consider the implication of
the number of arbitrary constants which can appear in the Painlevé series and its relationship
to the space of initial conditions. Suppose that we have a number of arbitrary constants
in the Painlev́e series equal to the order of the equation. Then we can span the whole of
the space of initial conditions and have a series representation of the general solution. On
the other hand an insufficient number of arbitrary constants means that the space of initial
conditions cannot be spanned and so the Painlevé series represents only a partial solution.

When we have the requisite number of arbitrary constants, we have hightened
expectations of being able to obtain an explicit solution. Thus for a SODE we shall show
that there exists a reduction of the solution to quadratures. In practice it may even be
something better. For example, Bouquetet al [2] and Lemmer and Leach [11] found that,
althoughẍ + xẋ + kx3 = 0 is always integrable in the sense of reduction to quadratures,
the integration can be explicitly performed when the parameterk is such that the equation
possesses the weak PT. In the case of a TODE we can expect a third symmetry which will
enable reduction of order of the equation to a ‘nice’ quadrature. We should not expect this
symmetry to be of point or contact type. It may equally well be nonlocal, but of the useful
variety [7].

In entering our investigations we definitely leave aside the search for the passing of
the strict PT for a more operational and empirical approach in the interests of furthering
understanding and finding generalizations. In this paper we direct attention to the application
of the singularity analysis, as well as the Painlevé test, to (5) and (6) and the use of both
LPS and RPS in establishing their integrability properties.

The paper is organized as follows: in section 2 we discuss different types of singularities
and asymptotic behaviours which can occur. In section 3 we give a general expression to
the nth-order equation satisfying the two mentioned symmetries. The PT of the SODE is
analysed in section 4. In section 5 we make two comments on the SODE imbedding the PT
in a more general form. Then, the PT of the TODE is considered in section 6 and a general
property of the LPS is outlined for thenth-order equation satisfying the two symmetries
mentioned in section 7. Then in section 8, we consider the reduced equations obtained by
taking into account the time translation symmetry. In section 9 we are concerned with the
algebraic nature of the first integral of the SODE and finally in sections 10 and 11 we apply
the results of the preceding sections to characteristic examples.
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Figure 1. Curve x(t) of equation (10) withk = − 3
2 , for a start atx(0) = 8, x ′(0) = 16 and

x′′(0) = 48. The scale factor ofx is 105.

2. Different types of singularities and asymptotic behaviour

We seek to imbed the PT into the self-similar structure. This even admits the possibility of
different kinds of self-similar behaviour. For example, in the leading-order analysis of the
generalized Chazy equation, (see section 10) two possible types of leading-order behaviour
are identified. When all three terms in

...
x +xẍ + kẋ2 = 0 (10)

are considered, we obtain the leading order

x = 6

(k + 2)(t − t0)
which is the self-similar solution. Another choice for the leading terms is possible by
taking only the second and third term (since the second and the third terms rescale in
the same way, taking the first term obliges us to take all three). In that case we obtain
x = a(t − t0)1/(1+k), wherea is an arbitrary constant, which corresponds to the self-similar
solution of the equation without the first term. Which solution, the one from the three terms
or the one from the two terms, will dominate the asymptotic behaviour is determined by the
initial conditions for a given value of the parameterk. The form of the second asymptotic
solution suggests immediately thatk = −1 is a critical value sincek < −1 introduces a
possible blow-up of the solution at a finite time whilek > −1 implies x and t going to
infinity at least for some initial values. This is illustrated in figures 1 and 2 respectively.

Let us consider now the examplef (ξ) = λξ2+ µξ + ν, corresponding to the equation

ẍ + λ ẋ
2

x
+ µxqẋ + νx2q+1 = 0. (11)

The invariance of (11) under the homothetic transformationt = αt̄ and x = βx̄ shows
that we have two essential parametersλ andν/µ2. Without any loss of generality we take
µ = 1. Then (8) is

dx

x
+8(ξ) dξ = 0 (12)

with

8(ξ) = ξ

(q + λ+ 1)ξ2+ ξ + ν .
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Figure 2. Curve x(t) of equation (10) withk = 1, for a start atx(0) = 4, x ′(0) = 2 and
x′′(0) = −1.

Figure 3. Curve8(ξ) of equation (11) in the caseq = 2, λ = 2, µ = 1 andν = −1.

Let us supposeq + λ + 1 > 0 andν such that we have two real roots for the equation
(q+λ+1)ξ2+ξ+ν = 0. For example, ifλ = 2, ν = −1 andq = 2, we have one negative
and one positive rootξ1 = −0.5582 andξ2 = 0.3582. Let us start withx(0) = 1 (point
A on figure 3). This is possible since the above mentioned rescaling imposesβqαµ = 1
which leaves the possibility of an arbitraryβ and a subsequent rescaling to one ofx0. Since
ξ(0) > ξ2, ẋ > 0 and, finally, dx/x > 0. Now from (12)8(ξ) dξ < 0 and as8(ξ) > 0,
one obtains dξ < 0. Consequentlyξ reaches the valueξ = ξ2 with

dx x−(q+1) = ξ2 dt.

This last equation gives

x = (−ξ2q)
−1/q(t − t0)−1/q

which, according to the sign oft0, indicates either an explosion of the solution in a finite
time t0 (if t0 > 0) or a decrease to zero ast 7→ ∞ in t−1/q (if t0 < 0). Here, sinceξ
is always positive,x must increase and we have an explosion in a finite time. In fact as
in our exampleq = 2 andξ2 > 0 we have(−ξ2q)

−1/q pure imaginary. Sincex must be
real, (t − t0)−1/q must also be purely imaginary indicating thatt0 > 0 and the subsequent
explosion att = t0. The same kind of argument shows easily that any starting point

x(0) > 0 ξ1 < ξ(0) < ξ2
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(point B on figure 3) leads to an increase inξ which passes the pointξ = 0 and again
reachesξ2 with an explosion ofx at a finite time. The last case deals with the trajectory
of a point initially at ξ(0) < ξ1 (point C on figure 3). It is easily shown thatξ 7→ −∞,
indicating thatξ1 is repulsive andx 7→ 0. However, the asymptotic form can be obtained
by noting that, ifξ 7→ −∞, (12) takes a simple form and can be integrated with

dx

x
+ dξ

(q + λ+ 1)ξ
= 0. (13)

The relationxξ1/(q+λ+1) = c wherec is an arbitrary constant, leads tȯxxλ = cq+λ+1 and
finally to the relation

x = a(t − t0) 1
λ+1 (14)

wherea is an arbitrary constant. Note that (14) is the solution of (11) in which we take into
account only the two first terms. Taking forx(t) the expression given by (14) we see that
the neglected terms in (11), namelyxqẋ andx2q+1, when divided byẍ vary respectively as

(t − t0)(q+λ+1)/(λ+1) and (t − t0)2(q+λ+1)/(λ+1). (15)

If the exponents oft − t0 in (15) are positive, it is possible indeed to neglect the last two
terms of (11). This indicates that the critical values areλ = −(q + 1) andλ = −1.

Figure 4. Curvex(t) for a start at pointA of figure 3.

Figure 5. Curvex(t) for a start at pointB of figure 3.
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Figure 6. Curvex(t) for a start at pointC of figure 3.

Figure 7. Curvex(t) of equation (11) for a start atξ(0) > 0 andx(0) = 1 in the caseq = 2,
λ = 2, µ = 1 andν = 0.03.

Figures 4–6 exhibit the curvesx(t) respectively for a start at points A, B and C of
figure 3 in the case of the above mentioned valuesq = 2, λ = 2, µ = 1 andν = −1.
Indeed we recover the two explosions and the cancellation ofx(t) in the third case as
(t − t0)1/3. Figure 7 is for the valuesq = 2, λ = 2, µ = 1 andν = 0.03 with the two roots
for ξ negative. In that case starting with a positiveξ(0) and x(0) = 1, x first increases
and then decreases to zero ast−1/qwhen t 7→ ∞. For some problems the leading order
corresponds to an explosion as(t − t0)−1/q when t 7→ t0, for others to a decrease ast−1/q

when t 7→ ∞.

3. On the generalnth-order differential equation

In this section we give a general expression to thenth-order differential equations possessing
the symmetries of time translation and self-similarity.

Proposition 1.Any nth-order ordinary differential equation (NODE) of the form

x(n) + g(x, ẋ, . . . , x(n−1), t) = 0 (16)

having the two symmetries of time translation and self-similarity, can be expressed as

x(n) + xnq+1f

(
ẋ

xq+1
, . . . ,

x(n−1)

x(n−1)q+1

)
= 0. (17)



7444 M R Feix et al

Proof. Let us employ first the symmetry characterizing the invariance under the time
translation. Then, under the action ofG1, (16) becomes

x(n) + g(x, ẋ, . . . , x(n−1)) = 0. (18)

Now applyG2 which represents the self-similarity. For that we compute thenth extension
of G2, namely

G
[n]
2 = −qt

∂

∂t
+ x ∂

∂x
+ (q + 1)ẋ

∂

∂ẋ
+ · · · + (nq + 1)x(n)

∂

∂x(n)
.

The action ofG[n]
2 on (16) induces the partial differential equation

x
∂g

∂x
+ (q + 1)ẋ

∂g

∂ẋ
+ · · · + [(n− 1)q + 1]x(n−1) ∂g

∂x(n)
− (nq + 1)g = 0

which we solve by the method of the characteristics. The associated Lagrange’s system is

dx

x
= dẋ

(q + 1)ẋ
= · · · = dx(n−1)

[(n− 1)q + 1]x(n−1)
= dg

(nq + 1)g
and the characteristics are

ξj = x(j)

xjq+1
(j = 1, 2, . . . , n− 1).

Consequently the solution of this linear partial differential equation is

g = x(nq+1)f (ξ1, . . . , ξn−1)

wheref is an arbitrary function ofξj (j = 1, . . . , n− 1) and finally

x(n) + g(x, . . . , x(n−1)) = 0 ⇐⇒ x(n) + xnq+1f (ξ1, . . . , ξn−1) = 0.

�

4. The PT for the SODE

In this section we apply the PT to the SODE. The PT is based on the Laurent series which
we recall, has the general form

+∞∑
j=−∞

aj τ
j

whereτ = t − t0 and t0 is the location of the movable singularity. The conventional PT
leads to an RPS of the form

∑j=∞
j=0 aj τ

j+p, but there is no reason not to consider a LPS

of the form
∑j=0
j=−∞ aj τ

j+p with p < 0 for the RPS and no restriction onp for the LPS.
In the LPSτ may be taken ast without any loss of generality. This is because the series
represents an expansion outside a disk centred ont0 and, when one is interested in the
behaviour ast 7→ ∞, the finite value oft0 loses relevance. This interpretation of the LPS
is in agreement with standard treatments of Laurent expansions. In (5) and (6) all terms
have the same weight due to the presence of the self-similar property. For both RPS and
LPS the leading order is inτ−1/q .

We want to use the PT to obtain a criterion of full integrability, i.e. we must have, in
the series, as many arbitrary coefficients as the order of the equation. We have already
noted that, for an RPS,t0 provides one of these arbitrary coefficients. Consequently, we
need one coefficient in the case of a SODE and two in the case of a TODE. For an LPS we
see that, since we expand fort →∞, we lose the arbitraryt0 (which located the movable
singularity). Hence we need, respectively, two and three arbitrary coefficients in the LPS
of SODE and TODE. We can formulate the following propositions
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Proposition 2.For a SODE to pass the Painlevé test, i.e. for an RPS to havear arbitrary—
which with t0 provides the two necessary arbitrary coefficients—and for an LPS to have
againar arbitrary (nowr is negative)—which together witha−1 gives the two arbitrary
coefficients—we need only the relationfξ + [2(q + 1) − qr]ξ0 = 0 to be fulfilled for r
positive (RPS) or negative (LPS) without any additional relation.

Proof. Let us consider first the case of an RPS for the SODE. Taking (7) into account, (5)
is now written

η + f (ξ) = 0. (19)

For the leading terma0τ
−1/q it is easily checked thatξ and η go to two constants. We

obtain

ξ → ξ0 = − 1

qa
q

0

η→ η0 = q + 1

q2a
2q
0

. (20)

Thenη0 = (q + 1)ξ2
0 , while (19) becomes the algebraic equation

f (ξ0)+ (q + 1)ξ2
0 = 0 (21)

giving the value ofξ0. We may have many values ofξ0 and, consequently, the analysis
given below should be applied to all values. We will return to the coherence of the different
possible solutions forξ0 below. Let us now search for one arbitrary coefficient in the RPS.
We write

x(t) = a0τ
−1/q + arτ r−1/q (22)

wherer is an integer. We should begin withr = 1 since, as we have already pointed out,
we seek not only the resonances as in the ARS algorithm but the possibility of gettingar
arbitrary. Introducing (22) in (19) and keeping the next term of the Taylor expansion inτ

we get

η0+ ηr + f (ξ0+ ξr) = 0

whereξ0 andη0 satisfy (21), namelyη0+ f (ξ0) = 0, andξr andηr are infinitesimal inτ r .
We must have

ηr + ξrfξ = 0 (23)

where the derivativefξ = df/dξ is taken at pointξ = ξ0. A little algebra shows that (23)
can be written

(r + 1){fξ + [2(q + 1)− qr]ξ0}arτ r = 0. (24)

The caser = −1 is not relevant since we are building an RPS. Now either

fξ + [2(q + 1)− qr]ξ0 = 0 (25)

andar can be arbitrarily selected and the equation passes the PT orar = 0. At this point we
must remark that in general the equation involvingar is of the formAar +B = 0, whereA
andB are algebraic expressions depending onr and the parameters of the equations (see for
example [8]). Hence, if we wantar to be arbitrary, we needA = 0 (resonance condition)
andB = 0 (compatibility condition). The interesting point of (24) is thatB is not present.
So there is no need to look for a compatibility condition as it is automatically satisfied.
This is connected to the fact that all terms are dominant in the SODE. It is only when the
similarity symmetry is broken that compatibility conditions must be explicity satisfied. We
return to this point when we consider the construction of the LPS and RPS of both SODEs
and TODEs. Therefore, in the case of equations possessing the two symmetries we have
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just one relation (25) to be fulfilled for eachξ0 which, of course, agrees with the resonance
condition of the ARS algorithm and all terms are zero up to the first integerr which fulfills
relation (25).

If there is no integer solution forr in (24), all coefficients are zero. Of course this does
not mean that around the singularity there is no correction to the leading-order term, but
because we have taken a Laurent series, if this correction term is not inτ r+p, the algorithm
will not detect it (see next paragraph).

Now let us apply an LPS to the SODE. At first we examine the obtaining of two of the
first three coefficientsa−1, a−2, a−3 as arbitrary. We consider the term next to the leading
term

x = t−1/q
(
a0+ a−1

t

)
.

As before, we computeξ−1, η−1, the t−1 terms in the expansion ofξ and η finding that
ξ−1 = η−1 = 0 for any value ofa−1. This occurs generally when the equation possesses
the self-similar property as will be seen later.

Afterwards we build, by recurrence, the second arbitrary coefficient. The first step is to
obtaina−2. We introduce the asymptotic expansion int−2 of η, ξ into (19) and find that

η0+ η−1+ η−2+ f (ξ0)+ (ξ−1+ ξ−2)fξ + 1
2ξ

2
−1fξξ + 1

2η
2
−1fηη + ξ−1η−1fξη = 0

and, because of the relationsη0+ f (ξ0) = 0 andξ−1 = η−1 = 0, we can write

η−2+ ξ−2fξ = 0

with

ξ−2 = −a−2−q
0 [2a0a−2− (q + 1)a2

−1]/2

η−2 = a−2q−2
0 (2q + 1)[2a0a−2− (q + 1)a2

−1]/q
(26)

and

η−2+ ξ−2fξ = 0 ⇐⇒ [2a0a−2− (q + 1)a2
−1][fξ + 2(2q + 1)ξ0] = 0.

Now eitherfξ + 2(2q + 1)ξ0 = 0 or 2a0a−2 − (q + 1)a2
−1 = 0. In the first casea−2 is

arbitrary and we can stop here since we have our two arbitrary coefficientsa−1 and a−2.
In the second casea−2 = (q + 1)a2

−1/(2a0) not arbitrary we must proceed to the following
step. However, first we make the fundamental observation that this is possible because of
the structure ofξ−2 andη−2 as given by (26) which leads toξ−2 = η−2 = 0. For this next
step (i.e.r = −3) we perform a Taylor expansion in powers oft−3 in (19) where we take
into account

η−1 = ξ−1 = η−2 = ξ−2 = 0.

Most of the terms disappear in thet−3 term of the Taylor expansion and we finally obtain

η−3+ ξ−3fξ = 0 (27)

where

ξ−3 = −a
−q−3
0

3
[a3
−2(q

2+ 3q + 2)+ 6a2
0a−3− 6a0a−1a−2(q + 1)]

η−3 = 2a−2q−3
0

3q
[2a3
−2(2q

3+ 5q2+ 4q + 1)+ a2
0a−3(15q + 6)

−a0a−1a−2(18q2+ 21q + 6)]
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which with a−2 = (q + 1)a2
−1/(2a0) becomes

ξ−3 = −a−q−3
0 [−a3

−1+ 6a2
0a−3− 3a3

−1q − 2a3
−1q

2]/3

η−3 = (5q + 2)a−2q−3
0 [−a3

−1+ 6a2
0a−3− 3a3

−1q − 2a3
−1q

2]/(3q).
(28)

Taking (28) into account in (27) we obtain finally

[−a3
−1+ 6a2

0a−3− 3a3
−1q − 2a3

−1q
2][fξ + (5q + 2)ξ0] = 0.

We see the emergence of the same process found at the preceding step: eitherfξ + (5q +
2)ξ0 = 0, i.e.a−3 is arbitrary and we can stop, or−a3

−1+6a2
0a−3−3a3

−1q−2a3
−1q

2 = 0 and
a−3 = (q + 1)(2q + 1)a3

−1/(6a
2
0) and we haveξ−3 = η−3 = 0. Note that the two relations

obtained for the respective arbitrariness ofa−2 anda−3, namelyfξ + (4q + 2)ξ0 = 0 and
fξ + (5q + 2)ξ0 = 0, are obtained by takingr = −2 and r = −3 in (24) which is the
necessary relation to havear arbitrary in an RPS.

Now we conclude assuming that up to a ranki = r + 1 (remember thatr is negative),
we haveξ−i = η−i = 0. In that case the very complicated nature of the equation, collecting
the terms for the coefficient oft r , which a priori involves all the derivatives up to the order
−r, simplifies and reduces to

ηr + ξrfξ = 0

whereξr andηr are given by

ξr = a
r−q
0

r
{|r|!ara−(r+1)

0 − (q + 1) · · · [1− (r + 1)q]a−r−1}

ηr = −2(q + 1)− qr
qr

a
r−2q
0 {|r|!ara−(r+1)

0 − (q + 1) · · · [1− (r + 1))q]a−r−1}

and we recognize that againξr andηr have a common factor containinga0 and the arbitrary
constanta−1. Now either this common factor cancels (and we haveξr = ηr = 0) or the
coefficient in front is zero and we have

fξ + [2(q + 1)− qr]ξ0 = 0

thereby generalizing the relationfξ + (5q + 2)ξ0 = 0 obtained previously for the case
r = −3. Consequently the relation needed to pass the PT (24) is the same for an RPS or
an LPS, proving the proposition. �

5. Comments on the PT

At this point, two comments are in order. The first deals with the expansion of the solution
around the singularity and shows how, for an RPS, the PT selects the values of the parameters
leading to a Laurent series. The second deals with the building of an LPS when the self-
similarity property is not present and how, in this case, we must introduce the begining of
a Psi series.

5.1.

Anticipating an example which will be treated extensively in section 10, we want to show
how the PT picks up the values of the parameters for which the expansion around the
singularity introduces terms inτ−1/q+r wherer is an integer. Consider the equation

ẍ + xẋ + kx3 = 0 (29)
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which corresponds toq = 1, f (ξ) = ξ + k in (5). Let us search an LPS. Then, except for
a set ofk of null measure, (i.e. except for special values ofk) all the coefficients are zero,
while obviously a series giving the correction to the singularity does exist. To find it we
introduce the functiong = g(τ) as

x = A/τ + g (30)

whereA/τ is the leading term withA given by

kA2− A+ 2= 0. (31)

We introduce (30) in (29) to obtain the equation forg and consider the linearized version of
this equation, in the sense thatg(τ)→ 0 whenτ → 0. A little algebra gives the linearized
g equation

g̈ + Aġ/τ + (2A− 6)g/τ 2 = 0. (32)

This is a Euler-type equation, the solution of which is given by

g = K1τ
λ1 +K2τ

λ2 (33)

whereλ1 andλ2 are the roots of the equation

λ(λ− 1)+ Aλ+ (2A− 6) = 0. (34)

The roots areλ = −2 andλ = 3− A which correspond to an expansion

x = τ−1

(
A+ K1

τ
+K2τ

4−A + · · ·
)
.

The term inK1/τ in the parentheses corresponds to a resonance atr = −1 and must
be disregarded since we deal with an RPS. The term inτ 4−A corresponds to a resonance
r = 4− A if A is an integer. But selecting the values ofk such thatA is an integer is
exactly what does the PT. To see it we note that (25) givesξ0 = −1/(4− r) sincefξ = 1
andq = 1. Remembering thatξ0 = −1/A (from (20) with q = 1) we see thatA = 4− r
and the set ofk values will be obtained in the PT by introducingA = 4− r in (31) with
the result

k = 2− r
(4− r)2 (35)

which can be generalized to values ofq 6= 1 (see section 10). The important thing is that
we have, for a givenk, a correction to the leading order which is not an integer power of
τ except if the PT is fulfilled. Since the algorithm building the Painlevé series supposes
an expansion in integer powers, it cannot pick up the cases whereA is not an integer and
misses the term inτ 4−A.

5.2.

A comment is in order concerning the ARS resonance atr = −1. This resonance does
not mean automatically thata−1 in an LPS is arbitrary. In fact this property is not true
if the equation does not possess the self-similar property, which happens when there is a
symmetry breaking term in the equation. For example, consider the equation

ẍ + xẋ + kxs = 0

with s 6= 3. We cannot any more have a balance involving the three terms of the equation.
We take firsts = 2. Then the only possible balance is between the first and third term
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(Remember we havet → ∞ since we are seeking an LPS). The leading term is now
x = A/t2 with A given by

6+ Ak = 0. (36)

Now writing the usual LPS withx = A/t2+ B/t3 (to find the usual resonance atr = −1)
brings

B(6+ Ak) = A2 (37)

which is impossible taking (36) into account. This shows that the arbitrariness ofa−1 (and
the subsequent possibility to buid an LPS) was a consequence of the self-similarity property
of the system. To find the nature of the series int−1 we write

x = A

t2
+ g. (38)

We get ẍ = 6A/t4 + g̈; xẋ = (−2A2)/t5 − 2Ag/t3 + ġA/t2 + gġ; kx2 = kA2/t4 +
2Akg/t2 + kg2. Then we neglect the terms ingġ and kg2 and also the term−2Ag/t3

obviously negligible compared with 2Akg/t2. So the equation forg writes

g̈ + A
t
ġ + 2Ak

t2
g − 2A2

t5
= 0. (39)

To try g = B/t3 is useless and brings back (37) (which is impossible). We try forg the
following expansion

g = B ln t

t3
+ C
t3
. (40)

Introducing (40) in (39) and keeping the terms up to lnt/t5 and 1/t5 we get

t−5[2B(6+ Ak) ln t − 2A2− 7B + 2C(6+ Ak)] = 0. (41)

Taking (36) into account we recognize that we must takeB = −2A2/7 whileC is arbitrary.
Similar results can be obtained withs = 4 with, now, a balance between̈x and xẋ. The
leading term isx = 2/t and we seek an expansion

x = 2/t + B ln t/t2+ C/t2

and we find again thatC can be arbitrarily chosen whileB = 16k/3.
We note, consequently, that for an equation not possessing the similarity symmetry, an

LPS does not seem possible but instead a logarithmic term—indicating the begining of a
Psi series—must be introduced. The implication for the possibility of partial integrability is
not yet understood but the presence of a logarithmic term destroys the possibility of analytic
solutions. Now we come back to equations possessing the two symmetries.

6. The PT for the TODE

Proposition 3.For a TODE to pass the Painlevé test, i.e. for an RPS to have two arbitrary
ar (ar1 andar2), the ARS resonance condition is fulfiled forr1 andr2. No other conditions
are needed ifr1 < r2 < 2r1, otherwise a further condition must be fulfilled. For an LPS to
have the three firstar arbitrary, only the ARS resonance conditions are needed.
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Proof. Introducing

ζ =
...
x

x3q+1
(42)

in (6), the TODE writes

ζ + f (ξ, η) = 0. (43)

For the leading term (43) becomes an algebraic equation inξ0, η0 and ζ0 with the same
relation (20) betweena0 andξ0. As before,η0 = (q+1)ξ2

0 and hereζ0 = (q+1)(2q+1)ξ3
0 .

Consequently the algebraic equation givingξ0 (and thena0) is

f (ξ0, (q + 1)ξ2
0 )+ (q + 1)(2q + 1)ξ3

0 = 0. (44)

To pass the PT we need two arbitrary coefficients in the RPS. Although the coefficientsas
are zero for 16 s < r, wherear is the first arbitrary coefficient as in the SODE, this is not
necessarily true fors > r. Now for s > r (24) is no longer automatically homogeneous
and we must check what further relations are needed. These are the so-called compatibility
conditions. Again we shall see that the self-similarity property brings a great simplification.
To see what new relations are found we consider an RPS and, for the sake of simplicity,
confine our attention to the three first terms (plusa0) i.e.

x(t) = τ−1/q(a0+ a1τ + a2τ
2+ a3τ

3).

Again we expandξ , η, ζ in powers ofτ with

(ξ, η, ζ ) =
3∑

j=0

(ξj , ηj , ζj )

where the terms are inτ j with j = 0, 1, 2, 3. Then (43) can be divided into the following
three equations, after introduction of the expansion ofξ, η, ζ and gathering terms of the
same degree inτ

ζ1+ ξ1fξ + η1fη = 0 (45)

ζ2+ ξ2fξ + η2fη + 1
2ξ

2
1fξξ + 1

2η
2
1fηη + ξ1η1fξη = 0 (46)

ζ3+ ξ3fξ + η3fη + ξ1ξ2fξξ + η1η2fηη + (ξ1η2+ η1ξ2)fξη

+ 1
6[ξ3

1fξξξ + 3ξ2
1η1fξξη + 3ξ1η

2
1fξηη + η3

1fηηη] = 0 (47)

where the subscripts stand for the partial derivatives. In (45)–(47) all the derivatives are
taken at the pointξ = ξ0, andη = (q + 1)ξ2

0 . Next we introduce the values ofξ1, ξ2, ξ3,
η1, η2, η3, ζ1, ζ2 andζ3 as functions ofa1, a2, a3. So (45) can be written

a1P1 = 0 (48)

with

P1 = fξ + (q + 2)ξ0fη + 3(q + 1)2ξ2
0 .

As in the preceding case, ifP1 = 0, thena1 is arbitrary without further condition. The
vanishing of the coefficient ofτ 2, i.e. (46), requires that

P2a0a2+ P3a
2
1 = 0 (49)

with

P2 = −6[fξ + 2ξ0fη + (2q2+ 3q + 3)ξ2
0 ] (50)

P3 = 3ξ2
0 (q + 1)(3q + 1)(2q + 3)+ 3(q + 1)fξ + 2ξ0(q + 3)(2q + 1)fη + 4ξ0qfξξ

+4ξ3
0q(q + 2)2fηη + 8ξ2

0q(q + 2)fξη. (51)
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The vanishing of the coefficient ofτ 3, i.e. (47), requires that

P4a
2
0a3+ P5a0a1a2+ P6a

3
1 = 0 (52)

with

P4 = −12[fξ − ξ0(q − 2)fη + 3(q2+ 1)ξ2
0 ]. (53)

P5 is a polynomial inξ0 of degree three, the coefficients of which depend uponq, fξ , fη,
fξξ , fηη and fξη and P6 is a polynomial inξ0 of degree five, the coefficients of which
depend uponq, fξ , fη, fξξ , fηη, fξη, fξξξ , fηηη, fξξη andfξηη.

Before commenting on these results we consider the relation needed to havear as the
first non-zero coefficient, i.e.

x(t) = a0τ
−1/q + arτ r−1/q .

As for the SODE we obtain an equation of the formarP = 0 which impliesP = 0, i.e.

fξ − [(r − 2)q − 2]ξ0fη + [(r2− 4r + 6)q2− 3(r − 3)q + 3]ξ2
0 = 0. (54)

We now return to our discussion on the possibility of having two arbitrary coefficients
amonga1, a2 anda3. There are three possibilities

(i) a1 anda2 are arbitrary. Then we needP1 = 0 andP2 = P3 = 0 to have respectively
(48) and (49) fulfilled for any value ofa1 and a2. It should be noted that the case
P1 = P2 = 0 corresponds respectively tor = 1 and r = 2 in (54). However, we see
that a further relationP3 = 0 is needed. This is a compatibility condition and involves a
second derivative.

(ii) a1 and a3 are arbitrary. We needP1 = 0 anda2 is given by (49). Now (49) is
nonhomogeneous. Introducing the value ofa2 into (52) we obtain

P4a
2
0a3+

(
P6− P3P5

P2

)
a3

1 = 0

so that we need, in addition toP1 = 0, the relationsP4 = 0 andP2P6 − P3P5 = 0, where
P4 = 0 corresponds tor = 3 in (54). Consequently we have three relations fora1 anda3

arbitrary, among them the two ARS resonances forr = 1 andr = 3. The compatibility
conditionP2P6−P3P5 = 0 is now a complicated one involving up to third-order derivatives.

(iii) We want a2 anda3 arbitrary. ConsequentlyP1 6= 0 and we must takea1 = 0. To
fulfil (49) we needP2 = 0 and to fulfil (52) witha1 = 0 we need onlyP4 = 0. Hence in
this last case we need only the two ARS resonance conditions and no additional one.

Now, if we suppose that the first arbitrary coefficient not equal to zero isar1 and the
ARS resonance condition is fulfilled forr2 (and of course forr1) such thatr1 < r2 < 2r1,
the equation passes the PT without further conditions. Such a result is obtained by changing
τ r1 in θ and noting that terms inθ2 andθ3 will appear in the computation in the coefficient
of τ s with s > 2r1 but not in the terms inτ r2 sincer2 < 2r1.

For the LPS and as in the case of the RPS, we treat the first three arbitrary coefficients.
We write

x = t−1/q
(
a0+ a−1

t
+ a−2

t2
+ a−3

t3
+ · · ·

)
and we turn the TODEζ + f (ξ, η) = 0 into an algebraic equation by expanding around
the valuesξ0, η0 = (q + 1)ξ2

0 andζ0 = (q + 1)(2q + 1)ξ3
0 . Expandingf (ξ, η) in a Taylor

series and gathering the terms of same order we obtain the following four equations

ζ0+ f (ξ0, η0) = 0

ζ−1+ ξ−1fξ + η−1fη = 0
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ζ−2+ ξ−2fξ + η−2fη + 1
2ξ

2
−1fξξ + 1

2η
2
−1fηη + ξ−1η−1fξη = 0 (55)

ζ−3+ ξ−3fξ + η−3fη + ξ−1ξ−2fξξ + η−1η−2fηη + [ξ−1η−2+ ξ−2η−1]fξη
+ 1

6[ξ3
−1fξξξ + 3ξ2

−1η−1fξξη + 3ξ−1η
2
−1fξηη + η3

−1fηηη = 0. (56)

Again a great simplification is obtained from noting that

ξ−1 = η−1 = ζ−1 = 0

indicating thata−1 is arbitrary. Moreover removing from the above equations all the terms
involving second- and third-order derivatives, the equations (55) and (56) become

ζ−2+ ξ−2fξ + η−2fη = 0 (57)

ζ−3+ ξ−3fξ + η−3fη = 0 (58)

with

ξ−2 = − 1
2a
−2−q
0 [2a0a−2− (q + 1)a2

−1]

η−2 = (2q + 1)

q
a
−2q−2
0 [2a0a−2− (q + 1)a2

−1]

ζ−2 = −3(2q + 1)(3q + 1)

2q2
a
−2−3q
0 [2a0a−2− (q + 1)a2

−1].

As in the case of the LPS of a SODE the important point is that inξ−2, η−2 andζ−2, a0, a−1

anda−2 provide the same factor 2a0a−2− (q + 1)a2
−1 and we have

2a2
0qξ0[2a0a−2− (q + 1)a2

−1][fξ + 2(2q + 1)ξ0fη + 3(2q + 1)(3q + 1)ξ2
0 )] = 0. (59)

With a−1 being arbitrary, if we also wanta−2 to be arbitrary, we must cancel the bracket
in (59). It is easily checked that the relation obtained is just (54) where we have taken
r = −2. Now we must computeξ−3, η−3 andζ−3 and we find that

ξ−3 = −a−q−3
0 [3a3

−1q + q2a3
−1+ 2a3

−1− 6qa−1a−2a0− 6a−1a−2a0+ 6a2
0a−3]/3

η−3 = 2a−2q−3
0 [15qa−3a

2
0 + 6a−3a

2
0 − 21q2a−2a−1a0− 18q2a−2a−1a0

−6a−2a−1a0+ 8qa3
−1+ 10q2a3

−1+ 2a3
−1+ 4qa3

−1]/(3q)

ζ−3 = −a−3−3q
0 (3q + 1)[18qa−3a

2
0 + 6a−3a

2
0 − 24qa−2a−1a0− 24q2a−2a−1a0

−6a−2a−1a0+ 6q3a3
−1+ 9qa3

−1+ 13q2a3
−1+ 2a3

−1]/q2.

(60)

If we want a−1, a−2 and a−3 to be arbitrary (for the passing of the PT) we can see that
the three valuesξ−3, η−3 andζ−3 as given by (60) and introduced in (58) give three terms
respectively ina3

0a−3, a2
0a−1a−2 and a0a

3
−1. The coefficients in front of these terms must

vanish and we obtain the three equations

fξ + (5q + 2)ξ0fη + 3(3q + 1)2ξ2
0 = 0 (61)

(q + 1)fξ + (2q + 1)(3q + 2)ξ0fη + 3(2q + 1)2(3q + 1)ξ2
0 = 0 (62)

(q + 2)fξ + 4(q + 1)(2q + 1)ξ0fη + 3(2q + 1)(3q + 1)(3q + 2)ξ2
0 = 0. (63)

The interesting point is that (62) and (63) are a consequence of (59) and (61), i.e. the two
relations (54) with respectivelyr = −2 andr = −3. If we use these two equations to solve
for fξ andfη as functions ofξ0 andq and introduce this solution in (62) and (63) we check
that these relations are automatically fulfilled. Consequently for an LPS witha−1, a−2, and
a−3 arbitrary we need only the two relations (54) forr = −2 andr = −3. �

As in the case of the SODE, no further relation is required. The above result that the
coefficienta−1 is arbitrary is a general one and we have:
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7. The NODE: resonance atr = −1

The resonance atr = −1 is a general property of the LPS of a NODE. The following
proposition shows this assertion.

Proposition 4.Any NODE which takes the form

x(n) + xnq+1f

(
ẋ

xq+1
, . . . ,

x(n−1)

x(n−1)q+1

)
= 0 (64)

has always in the LPS the coefficienta−1 arbitrary.

Proof. The leading term of this self-similar ODE is in power oft−1/q . We introduce into
(64)

x = a0t
−1/q + a−1t

−1−1/q .

The substitution ofξj = x(j)

xjq+1 (j = 1, . . . , n− 1) brings (64) to the form

ξn + f (ξ1, . . . , ξn−1) = 0.

After an expansion in negative powers oft , ξj is

ξj = ξ0,j

[
1+ a−1(1+ jq − 1− jq)

a0t
+O(1/t2)

]
= ξ0,j (1+O(1/t2)).

We see thata−1 disappears from (64). This implies its arbitrariness. �

8. Reduced equations

We are interested to see what happens to the relation for the PT when, instead of the
original equation, we consider the reduced equation obtained by taking into account the
time translation symmetry. This point is specially interesting since in that casex becomes
the independent variable andẋ = y the dependent one. The singularity at timet0 (x going
to infinity) obtained in the RPS will correspond in the reduced equation tox → ∞ and
consequently to an LPS.

8.1. Case of the SODE

Taking x as a new variable andy = ẋ as a new function we write the SODE (5) as

y
dy

dx
+ x2q+1f (yx−q−1) = 0.

The leading term is nowy = ξ0x
q+1, whereξ0 is given by the same relation as before,

namelyf (ξ0) + (q + 1)ξ2
0 = 0. We construct an LPS withy = ξ0x

q+1 + arxq+r+1. To
obtain an arbitraryar (with r < 0) we must satisfy

fξ (ξ0)+ [2(q + 1)+ r]ξ0 = 0.

Again, if this relation is not fulfilled, we must takear = 0. Comparing with the relation
(24) obtained for the RPS of the original equation we see that we just have to replaceqr

by −r. If we remember that in the RPSr is positive and in the LPS negative, we see that
for the samef and with q 6= 1 the reduced equation isq times ‘richer’ than the original
one. This is not surprising since the leading term inτ−1/q of the original equation hasq
branches while the reduced equation is analytic. In section 10 we make a comment, by
means of an example, on the significance of this difference.
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8.2. Case of the TODE

The above property for the SODE will also be found in the TODE case. In the same way,
by introducingy = ẋ in equation (6), we find that

y2 d2y

dx2
+ y

(
dy

dx

)2

+ x3q+1f

(
y

xq+1
,

y

x2q+1

dy

dx

)
= 0.

The leading term is still given byy = ξ0x
q+1, whereξ0 is defined by the relation (44). For

the coefficientar to be arbitrary we must perform an LPS with

y = ξ0x
q+1+ arxr+q+1 (r < 0)

and the following relation must be satisfied

fξ (ξ0, η0)+ (2q + 2+ r)fη(ξ0, η0)+ [6q2+ (4r + 9)q + r(r + 3)+ 3]ξ2
0 = 0. (65)

If it is not satisfied, thenar = 0. We can immediately note that replacingqr by −r
(r < 0) in relation (54) (which has been obtained in the building of the RPS of the original
equation) we obtain the relation (65) above. Finally the construction of an LPS for the
reduced equation transforms the multivalued function

x(t) = t−1/q
∑
j>0

aj (t − t0)j

into a univalued function as

y(x) = xq+1
∑
j>0

a−j x−j

which is holomorphic. It may well be that the holomorphy is responsible for the fact
that the reduced equation describes a situationq times ‘richer’ from the point of view of
integrability. Moreover, in a geometrical interpretation, the reduced equation allows us to
work on the Riemann surfaces of the multivalued function, the leading term of which being
t−1/q . For the second function the Riemann surface is represented byq superposed sheets
which join at the critical pointst = t0 and t = ∞.

9. Algebraic nature of the equation for the first integral of the SODE

The equation (8) can be written

dx

x
+ ξ

F (ξ)
= 0 (66)

with

F(ξ) = f (ξ)+ (q + 1)ξ2.

Let us suppose thatF(ξ) is an analytic function. Then ξ

F (ξ)
can be expressed through the

polesξ0i of F(ξ)

ξ

F (ξ)
=
∑
i∈�

ξ0i

Fξ (ξ0i )(ξ − ξ0i )
(67)

where� is a finite set and

Fξ (ξ0i ) = fξ (ξ0i )+ 2(q + 1)ξ0i . (68)

The ξ0i are the poles giving the dominant term. To obtain a resonancer we must have the
relation (24) fulfilled, i.e.

fξ (ξ0i )+ 2(q + 1)ξ0i = qriξ0i . (69)
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Equations (68) and (69) show thatFξ (ξ0i ) = qriξ0i . Substituting this into (67) we obtain

ξ

Fξ (ξ)
=
∑
i

1

qri(ξ − ξ0i )

and (66) can be integrated to give the constant of motion

I = x
∏
i

(ξ − ξ0i )
1
qi ri (70)

which can be turned into a polynomial expression sinceq and ri are integers. The crucial
point is the disappearance ofξ0i to obtain an equation involving only the differentri and,
of course,q. In the general case we must check the nature of the valueri connected to the
poleξ0i . For example, let us consider again the case of the SODE withf (ξ) = λξ2+ ξ + ν
the asymptotic form of which we sought in section 2. The two rootsξ01 and ξ02 are now
given by the solution of

(q + λ+ 1)ξ2
0 + ξ0+ ν = 0. (71)

A first resonance atr in an RPS gives

ξ01 = 1

qr − 2(q + λ+ 1)
(72)

corresponding toν = [q(1− r)+ λ+ 1]/[qr − 2(q + λ+ 1)]2. We obtain the second root

ξ02 = (1− r)q + λ+ 1

(q + λ+ 1)[qr − 2(q + λ+ 1)]
(73)

and, with (67), the first integral (70) can now be written

I = xλqr [ẋ − ξ01x
q+1]q+λ+1[ẋ − ξ02x

q+1](r−1)q−λ−1. (74)

Here the polynomial nature of the first integralI requires thatλ be an integer.

10. Characteristic example for the SODE

In equation (5) the case where

q = 1 and f (ξ) = ξ + k (75)

arises in applications such as fusion of pellets [5] and astrophysics [14] and has received
extensive mathematical treatment [13]. The equation (5) becomes

ẍ + xqẋ + kx2q+1 = 0 (76)

the reduced form of which being

y
dy

dx
+ xqy + kx2q+1 = 0. (77)

We introduce this special form for two reasons. The first is because we wish to extend the
classical PT for which, when applied to the caseq = 1, only the valuesk = 1

9, 0 and−1 are
considered as corresponding to the indicialr = 1, 2, 3 respectively. The second is because
we wish to explore the implications for other possible indicial resonances. The answer is
found by looking at the first integral as defined by (8) for the values ofk when f (ξ) is
replaced by (75). Moreover we use (21) withf (ξ0) = k− q−1a

−q
0 and the resonance index

relation (24) wherefξ (ξ0) = 1 to obtain

k = q + 1− qr
(2+ 2q − qr)2 . (78)
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Thus the first integral (8) becomes

I = (ẋ − ξ+xq+1)q+1(ẋ − ξ−xq+1)−1−q+qr (79)

whereξ+ andξ− are the roots of(q + 1)ξ2+ ξ + k = 0, which with (78) take the forms

ξ+ = 1

qr − 2q − 2

ξ− = q + 1− qr
(q + 1)(qr − 2q − 2)

.

(80)

The first integral (79) is a polynomial function for all values of integerq and r. Whenk
is selected such that the equation passes the PT, this result is in fact general for all SODEs
of this form as was demonstrated in section 9. The relation (79) can be considered as an
equation givingẋ as a function ofx, but the performance of the inversion implies that this
equation should be of degree less than five and consequently cannot be given an explicit
global form except for

q = 1 r = 1, 2, 3 (k = 1
9, 0,−1)

q = 2 r = 1, 2 (k = 1
16,− 1

4)

q = 3 r = 1 (k = 1
25).

Note thatq = 1 andr = 4 give a fourth-degree equation iṅx, but must be rejected because
k is no longer finite. We emphasize that these constraints are only on the existence of
an explicitly global representation oḟx as a function ofx. The inverse function theorem
guarantees the invertibility for all values ofq and r. The cases withq = 2 andq = 3 are
new.

The passing of the PT forr = 1 and an arbitraryq deserves a special treatment. It was
noted [10] that forq = 1 andk = 1

9 the change of dependent variable

x = 3u̇/u (81)

gives the simplest possible equation namely
...
u= 0. It turns out that this result can be

generalized for an arbitraryq with the value ofk corresponding to the resonancer = 1 i.e.
accordingly to (78)k = 1/(q + 2)2. Let us introduce the change of variable

x =
(

1+ 2

q

)1/q (
u̇

u

)1/q

(82)

which generalizes (81). The equation foru becomes

u̇
...
u=

(
1− 1

q

)
ü2+ 1

q

u̇4

u2
[1− k(q + 2)2]. (83)

Sincek = 1/(q + 2)2 the last term in the r.h.s. of (83) cancels and we get

u̇
...
u=

(
1− 1

q

)
ü2. (84)

However, (84) now has three symmetries. First the invariance with respect to time
translation and the two homogeneity symmetries characterized byt∂/∂t andu∂/∂u. After
some calculations we obtain forx(t)

x(t) =
[
(q + 1)(q + 2)

q

]1/q [
A(At + B)q

(At + B)q+1+ C
]1/q

. (85)

The constantsA, B andC in (84) are determined by the initial conditions. In fact dividing
B by A and C by Aq+1 we see that we have only two constants to be determined and
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Table 1. Values taken by the second resonancer2.

r1

q 1 2 3 4 5 6

1 ∗ − 2 ∗ ∞ ∗ 6 4 10
3 3

2 ∗ − 3 ∗ 6 3 12
5

15
7 2

3 ∗ − 4 4 12
5 2 20

11
12
7

4 −5 10
3

15
7

20
11

5
3

30
19

5 −6 3 2 12
7

30
19

3
2

without any loss of generality we can takeA = 1. ThenB andC are determined by the
two initial conditionsx(0) and ẋ(0). We see that the simple integrable case pointed out by
the resonancer = 1 in the caseq = 1 can be generalized to any value ofq.

In that case we note that (79) becomes an equation of degree greater than four ifq > 4.
In our opinion it shows simply that many roads leading to integrability exist for a function
having passed the PT, the existence of a polynomial relation connectingẋ andx being one
and the caseq arbitrary andr = 1 being another. We will come back to that point.

For completeness, let us show finally how we recover (79) from (70). As given by (78),
k is selected to give a resonance at an integerr1. Introducing this value ofk in (21) we
obtain two values forξ0. One, let us sayξ01, introduced in (24) gives a resonance atr1,
which is quite normal since this value ofk was built fromr1. The other using (24) gives a
valuer2

r2 = r1(q + 1)

(r1− 1)q − 1
(86)

and (70) can be written

I = x(ξ − ξ01)
1
qr1 (ξ − ξ02)

(r1−1)q−1
r1q(q+1) . (87)

Taking the powerr1q(q+1) of the two members of (87) and remembering thatξ = ẋ/xq+1

we recover (79) and the polynomial nature of the equation connectingẋ andx is proved.
Now we come back to an important point dealing with the need to have the PT fulfilled

for all the singularities of the equation. (85) provides the answer for the SODE (76). If
r1 is an integerr2 is at least a rational number and the second singularity exhibits at least
a weak PT with the possibility of writing the invariant in a polynomial form. Table 1 is
interesting: it gives for a resonance atr1 the valuer2 of the other resonance for different
values ofq.

The values where we found a possibility of integration by noting thatẋ can be solved
as a function ofx are indicated by an asterix. For all these values bothr1 andr2 are integer.
But other cases point out possible integrability with two integer values forr1 andr2. First,
for any value ofq, the existence of a LPS with resonances atr1 = 1 andr2 = −(q + 1)
as indicated by the first column of table 1. The solution has just been given in (85). But
other cases are possible. For exampleq = 5 with r1 = 2 andr2 = 3 andq = 3, r1 = 2,
r2 = 4. For these cases the integration is still to be done.

Note that forq = 1 andr = 2 the second resonance is infinite,k = 0 and the equation
becomesẍ + xẋ = 0 with the obvious first integral̇x + x2/2 = I in agreement with (79)
and (80).

Returning to the reduced equation (77) we can show that forq > 1 explicitly new
solvable cases exist because we can replaceqr by −r in (78)–(80). These are worthy of
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separate investigation. They lead to quadratures where the integrands are explicitly known
in the cases

q = 2 with r = −1,−2,−3,−4 (k = 2
25,

1
16, 0,− 1

4)

q = 3 with r = −1,−2,−3,−4 (k = 3
49,

1
18,

1
25, 0)

in addition to the caseq = 1 with the valuesr = −1,−2,−3. Consequently, we find other
new cases of integration, namely thek values corresponding tor = −1,−3 in the case of
q = 2 and r = −1,−2,−4 in the case ofq = 3. Note that thek values for which the
SODE passes the PT are a subset of thek values for which the reduced first-order equation
passes the test. It appears that the reduced equation is ‘richer’, but not automaticallyq times
‘richer’ since the requirement for thėx equation to be of degree less than five introduces
constraints on the possible values ofq andr.

11. Characteristic example for the TODE

The case of the generalized third-order equation, (6), may be regarded as a generalized
Chazy equation [4]. It is the Chazy equation when

f (ξ, η) = kξ2+ η (88)

and q = 1 and k = − 3
2. When k = − 11

7 , it is known as Bureau’s equation [3]. Both
third-order equations were treated by Fordy and Pickering [6].

Equation (6) can always be reduced to the first-order equation

dη

dξ
= f (ξ, η)+ (2q + 1)ξη

(q + 1)ξ2− η (89)

where ξ and η are as defined above. However, there is no longer the equivalent of
reduction to quadratures through the first integral (89) since there are insufficient symmetries.
Nevertheless, there are cases, whenf is given by (88), for which it is integrable. In the case
of the Chazy equation this follows from the existence of a third-point symmetry, namely

G3 = t2 ∂
∂t
+ 2(6− xt) ∂

∂x
.

This is not the case for Bureau’s equation, but whenk = 1, the equation is integrable.
Clearly (89) can be reduced to a quadrature only under appropriate restrictions onf .

With (88) in (6), the equation becomes
...
x +xqẍ + kxq−1ẋ2 = 0. (90)

We consider (90) hereafter adopting the general procedure described in section 4. The
explicit building of the series is informative in terms of interpretation of the somewhat
different natures of the RPS and LPS.

Now, with f (ξ, η) = kξ2 + η, we havef (ξ0, (q + 1)ξ2
0 ) = (q + 1+ k)ξ2

0 ; fξ = 2kξ0

andfη = 1. This gives the valueξ0 andk namely

ξ0 = − q + 1+ k
(q + 1)(2q + 1)

k = − (q + 1)[q2r2− 2(q + 1)qr + (q + 1)(2q + 1)]

q2r2− q(4q + 3)r + (q + 1)(2q + 1)

which for q = 1 becomes

k = −2
r2− 4r + 6

(r − 1)(r − 6)
. (91)
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If we seek an RPS for the generalized Chazy equation, we should look for values of
r where we need only the two ARS resonance relations: (54) for example withr = 2, 3.
We find indeed thatk = 1 and q = 1 allow (54) to be satisfied for these two values.
More surprising is the existence of an LPS witha−1, a−2 anda−3 arbitrary forq = 1 and
k = − 3

2. Indeed we check that (59) and (61) (i.e. (54) forr = −2 andr = −3) are fulfilled.
Alternatively we can check thatr = −2 andr = −3 introduced in (91) give the same value
k = − 3

2, while r = 2 andr = 3 givesk = 1. The fulfilment of (59) and (61) in that last
case and the first case, (k = q = 1 ) were pointed out by Fordy and Pickering [6].

Other characteristic examples for this TODE are those which satisfy the property

k = q
for which (75) givesξ0 = −(q + 1)−1 and (54) gives the resonances

r1 = q + 1

q
r2 = 2q + 1

q
.

We note that whenq = k = 1/m with m an integer number these resonances arer1 = m+1
andr2 = m+ 2 and thus satisfy the propertyr1 < r2 < 2r1 with r1 > 1. Consequently the
PT is passed.

Of course form = 1 = k = q the resultr = 2, 3 is recovered. At this point one
may wonder whyk = q is so interesting. An explanation can be given, noting that for
k = q (89) admits a solutionη = −ξ . Then we go back to the original equation (90) which
becomes

...
x +xqẍ + qxq−1ẋ2 = 0. (92)

We can proceed to a first integration obtaining

ẍ + xqẋ = A
and on integrating again

ẋ +
(
xq+1

q + 1

)
= At + B. (93)

This last equation can be proved to be integrable for certain values ofq. The caseA = 0
corresponds to initial conditions where

ẍ(0)+ xq(0)ẋ(0) = 0

i.e. precisely

η(0)+ ξ(0) = 0.

For this class of initial conditions the equation is integrable.

12. Conclusion

In contradistinction to other work we emphasize the building of an explicit Laurent series.
The classical Painlevé series is based on an expansion in a disk centred on a movable
singularity at t = t0. In that case we needn − 1 additional arbitrary coefficients for
an equation of ordern. On the other hand we can build another series outside the disk
containing t0 and this is an expansion fort 7→ ∞. In this case we needn arbitrary
coefficients. Given the existence of the correct number of resonances there remains the need
for consistency. In this paper we have studied particularly the properties of the second-
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and third-order equations possessing the symmetries of time translation and similarity. For
the family of second-order equations we always obtain a first integralI and have shown
in the special case of (76) that this first integral is a polynomial inẋ for the values of the
parameters leading to the passing of the PT. A generalization of this result is possible and
was given in section 9. This polynomial provides an algebraic equation inẋ as a function
of x andI . To obtain the final quadrature in global form this polynomial must be of degree
less than five and this gives, among others, the three classical values of the parameterk,
namely 1

9, 0, and−1. It is interesting to observe that the problems of multivaluedness
associated with the second-order equation (5) forq > 1 disappear when we use the time
translation symmetry to reduce (5) to first order. This first-order equation must be studied
with an LPS since the new independent variablex goes to infinity and corresponds to the
movable singularity att = t0. This reminds us that the passing of the PT is representation
dependent. We also give an explicit proof for thenth order equations possessing time
translation and self-similarity symmetries that they always have an arbitrarya−1 coefficient
in the construction of the LPS. This result gives more pedagogical sense to the arbitrariness
of a−1 than usual arguments presented in the literature on the meaning of the resonance
r = −1. New integrable cases have been obtained together with old ones, as characteristic
examples of the second- and third-order equations.
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